Home » University of California Berkeley Eigenvalues & Diagonalization using MATLAB Report

University of California Berkeley Eigenvalues & Diagonalization using MATLAB Report

4 ︱ Eigenvalues & Diagonalization8/23/2021
Main
FAQ
Quiz Times
Tutor Hours
4 ︱ Eigenvalues & Diagonalization
In this lab, we’re going to learn how to use MATLAB to compute the eigenvalues, eigenvectors,
and determinants of matrices. Then we’ll use these new mathematical tools to revisit old problems
from a new perspective.
4.1 ︱ Determinants
As you should be aware by now, there is a nice formula for calculating the determinant of a 2×2
matrix. Even the 3×3 case is not too hard. But as the size of a matrix increases, the determinant
calculation gets much more complicated. This is where MATLAB comes in.
Start by entering the following two matrices in MATLAB:
To compute the determinants of these matrices, we use the command det():
>> det(A)
ans =
76
>> det(B)
ans =
48
Exercise 4.1
a. Use MATLAB to compute the determinants of the matrices A+B, A-B, AB, A-1, and BT.
(Recall that in MATLAB, BT is written as B’.)
b. Which of the above matrices are not invertible? Explain your reasoning.
c. Suppose that you didn’t know the entries of A and B, but you did know their
determinants. Which of the above determinants would you still be able to compute from
this information, even without having A or B at hand? Explain your reasoning.
Note 4.1: In this class, we’re interested in determinants mainly as a way to study the invertibility of
matrices. When we use MATLAB for this purpose, we must be careful. Any computer program will
introduce rounding errors, so a matrix that actually is invertible may appear to have zero
determinant.
Exercise 4.2
Enter the following matrix in MATLAB:
https://www.math.ucsd.edu/~math18/Lab4.shtml
1/7
4 ︱ Eigenvalues & Diagonalization
8/23/2021
Use det() to calculate the determinant of N100. Based on this information, do you think that
N100 is invertible?
Now compute the determinant of N. Calculate the determinant of N100 by hand. Now would
you reconsider your answer to the previous question? Explain.
What we’ve just seen in this exercise is an example of the sort of rounding error that computers
can introduce.
4.2 ︱ Eigenvalues and Eigenvectors
As you may have already learned in class, an eigenvalue of a matrix A is a number λ such that the
equation Av = λv has solutions other than the zero vector. Such a vector v is called an eigenvector
corresponding to the eigenvalue λ. Generally, it’s rather unpleasant to compute these eigenvalue
and eigenvectors for a matrix by hand. Luckily, the MATLAB command eig() can perform this
task for us.
Example 4.1
Suppose we’d like to compute the eigenvalues of the matrix B we used earlier, and we want
to store the eigenvalues in a vector b. We can do this using the following command:
>> b = eig(B)
b =
1
8
3
2
Thus we see that the eigenvalues are 1, 8, 3, and 2; there are four eigenvalues because our
matrix is 4×4. (As an aside, note that we can quickly compute the determinant of B with this
information: it’s just the product of the eigenvalues.)
If we want to compute the eigenvalues and corresponding eigenvectors all in one step, we
can simply use the following command:
>> [P,D] = eig(B)
P =
1.0000
0
0
0
-0.1980
0.6931
0.6931
0
0.2357
-0.2357
0.9428
0
0.9074
-0.1815
0.3630
0.1089
D =
1
0
0
0
0
8
0
0
0
0
3
0
0
0
0
2
https://www.math.ucsd.edu/~math18/Lab4.shtml
2/7
4 ︱ Eigenvalues & Diagonalization
8/23/2021
The matrix P here has the eigenvectors of B as its columns, and the diagonal matrix D has
the corresponding eigenvectors along the diagonal. This means, for instance, that the second
column of P is an eigenvector for the eigenvalue 8, which is the second entry along the
diagonal of D.
Let’s quickly check this result. Enter the following command:
>> x = P(:,2);
This will store the second column of P as a new vector that we’re calling x. Now enter
>> B*x – 8*x
If we’ve done everything correctly, we should get 0, since x is supposed satisfy the equation
Bx = 8x.
Now let’s explore one of the interesting properties of these eigenvalue and eigenvector matrices.
Exercise 4.3
a. Enter the following matrix in MATLAB:
>>
V = [-8 6 -6 -30; 3 9 12 -10; 3 -6 -1 18; 3 0 4 7]
Now use MATLAB to find the eigenvectors and corresponding eigenvalues of V. Assign
them to matrices P and D, respectively.
b. Determine whether V is invertible by looking at the eigenvalues. Explain your reasoning.
c. Use MATLAB to evaluate P-1VP. What do you notice?
4.3 ︱ Diagonalization
We’ve just seen an example of an important phenomenon called diagonalizability. We say that a
matrix A is diagonalizable when we can find an invertible matrix P such that P-1AP is diagonal. But
this idea seems really arbitrary: why would anyone want to modify the matrix A like this just to
make it diagonal?
To answer this question, let’s think about the problem of raising A to a large power—100, say. This
kind of computation is definitely useful; in a lot of real-world applications, you’re interested in what
happens when some process (represented mathematically by the matrix multiplication) is applied
to some initial conditions (stored in a vector) over and over again. We could of course just multiply
A by itself 100 times, but that makes for a lot of operations, even for a computer. It will take a long
time, especially if A is large. However, diagonalization offers us a neat shortcut. If we could write A
as PDP-1, where D is a diagonal matrix, then we can do this:
A100 = (PDP-1)100 = (PDP-1)(PDP-1) (PDP-1) = PD(P-1P)D(P-1P)
(P-1P)DP-1 = PD100P-1.
D100 is much nicer than A100 because in order to raise a diagonal matrix to a power, all you have
to do is raise all of its entries to that power. This requires far fewer matrix multiplications.
Not every matrix is diagonalizable. In order to diagonalize an n×n matrix, we need to find n
eigenvectors of that matrix that form a basis of Rn. These n linearly independent eigenvectors form
the columns of P, and then the entries of D are the matching eigenvalues. If we can’t find a basis
consisting only of eigenvectors, then the matrix isn’t diagonalizable.
Theorem: If an n×n matrix has n distinct eigenvalues, then the matrix is diagonalizable.
Note that the converse is not true: some matrices are diagonalizable even though they don’t have
distinct eigenvalues. One example is the identity matrix, which is already diagonal and whose
eigenvalues are all 1.
https://www.math.ucsd.edu/~math18/Lab4.shtml
3/7
4 ︱ Eigenvalues & Diagonalization
8/23/2021
Exercise 4.4
a. Enter this matrix in MATLAB:
>> F = [0 1; 1 1]
Use MATLAB to find an invertible matrix P and a diagonal matrix D such that PDP-1 = F.
b. Use MATLAB to compare F10 and PD10P-1.
c. Let f = (1, 1)T. Compute Ff, F2f, F3f, F4f, and F5f. (You don’t need to include the input
and output for these.) Describe the pattern in your answers.
d. Consider the Fibonacci sequence {fn} = {1, 1, 2, 3, 5, 8, 13…}, where each term is
formed by taking the sum of the previous two. If we start with a vector f = (f0, f1)T, then
Ff = (f1, f0 + f1)T = (f1, f2)T, and in general Fnf = (fn, fn+1)T. Here, we’re setting both f0 and
f1 equal to 1. Given this, compute f30.
The Fibonacci sequence we just saw is defined recursively: each term is given by a formula
involving previous terms. By computing Fn (which is done by computing PDnP-1), we can actually
derive an explicit formula for each term that doesn’t require you to already know previous terms.
4.4 ︱ Electoral Trends Revisited
At the end of the last lab, we said we would revisit our election example once we had some more
tools to work with. For your convenience, we’ve reprinted the information related to that example
below:
In California, when you register to vote, you declare a party affiliation. Suppose we have just
four political parties: Democrats, Republicans, Independents, and Libertarians. Party
registration data is public, so we can track what fraction of the voters in each party switch to a
different party from one election to the next. Let’s say we look up Democratic Party
registration data and discover the following: 81% of Democrats remain Democrats, 9%
become Republicans, 6% re-register as Independents, and 4% become Libertarians. We can
do the same kind of calculation for the other three parties and then organize our data into a
table:
Democrats Republicans Independents Libertarians
Democrats
0.81
0.08
0.16
0.10
Republicans
0.09
0.84
0.05
0.08
Independents
0.06
0.04
0.74
0.04
Libertarians
0.04
0.04
0.05
0.78
In this table, we’ve put our results in the columns, so the numbers reflect the proportion of
voters in that column’s political party who switch to the party listed to the left. For example,
the entry in the “Republicans” row and the “Independents” column tells us that 5% of
Independents become Republicans each electoral cycle. We’re going to assume that these
numbers do not change from one election to the next—not a very realistic assumption, but
good enough for our simple model.
Naturally, we want to use this data to predict the outcomes of future elections and the longterm composition of the electorate. Think of the table above as a matrix, which we will call P.
Let D0, R0, I0, and L0 denote the current shares of the electorate held by Democrats,
Republicans, Independents, and Libertarians, respectively. In the next election, these numbers
will change according to P, as follows:
D1 = 0.81 D0 + 0.08 R0 + 0.16 I0 + 0.10 L0
R1 = 0.09 D0 + 0.84 R0 + 0.05 I0 + 0.08 L0
I1 = 0.06 D0 + 0.04 R0 + 0.74 I0 + 0.04 L0
L1 = 0.04 D0 + 0.04 R0 + 0.05 I0 + 0.78 L0
https://www.math.ucsd.edu/~math18/Lab4.shtml
4/7
4 ︱ Eigenvalues & Diagonalization
8/23/2021
Let xn be the vector (Dn, Rn, In, Ln)T. This vector represents the party distribution after n
electoral cycles; the first entry is the portion who are Democrats, the second the portion who
are Republicans, and so on. The equations we just wrote out above show us that x1 = Px0. In
general, xn = Pnx0.
You’re going to need the matrix P and initial distribution vector x0 from the exercise we did:
>> P =
0.0900
0.0600
0.0400
[0.8100 0.0800 0.1600 0.1000;
0.8400 0.0500 0.0800;
0.0400 0.7400 0.0400;
0.0400 0.0500 0.7800]
>> x0 = [0.5106; 0.4720; 0.0075; 0.0099]
You’ll also need your results from that exercise, so go ahead and redo it if you don’t have your
answers handy. (You don’t need to include them in your write-up this time, however.) Your results
probably seemed to stabilize as we went further into the future. Let’s try to explain that
mathematically.
For this exercise, we’ll need to introduce the concept of limits. Many of you will have already seen
limits in pre-calculus or calculus classes. A rough intuitive definition of limit is this: a limit is a
number that a function “approaches” when the numbers you plug in to that function get close to a
certain value. So if we say, “The limit of the function f(x) when x approaches 2 is 5,” that means we
can make f(x) as close as we like to the value 5 by choosing values for x that are closer and closer
to 2.
You can also speak of limits of sequences of numbers: if we have a sequence {an}, to say that the
limit of this sequence is L is to say that however close you ask me to get to L, I can find a term in
the sequence so that all the subsequent terms are that close to L. Formally, the criterion is that for
every positive number ε (no matter how small), there is an index N such that for each term xn after
xN, the difference between L and xn is less than ε.
Some sequences are easy to compute limits for. For example, consider the geometric sequence {r,
r2, r3, r4, …}. We can see what happens simply by checking how big r is. If |r| < 1, then the terms get smaller and smaller and eventually approach 0. If r = 1, then the sequence just stays at 1 forever. And if r > 1, the terms grow larger and larger, and we say that the limit is infinity.
Exercise 4.5
a. Use MATLAB to find a matrix Q and a diagonal matrix D such that P = QDQ-1.
b. Now recall that Pn = QDnQ-1. Find the limit as n tends to infinity of Dn by hand; we’ll call
the resulting matrix L.
c. Using MATLAB, multiply L by Q and Q-1 (on the appropriate sides) to compute P∞, the
limit as n tends to infinity of Pn. Store the answer in a variable called Pinf.
d. Now use MATLAB to compute P∞x0. How does your answer compare to the results you
saw in the second part of the exercise from last lab?
e. Make up any vector y in R4 whose entries add up to 1. Compute P∞y, and compare
your result to P∞x0. How does the initial distribution vector y of the electorate seem to
affect the distribution in the long term? By looking at the matrix P∞, give a mathematical
explanation.
4.5 ︱ PageRank Revisited
Back in Lab 2, we discussed Google’s PageRank algorithm for ranking websites using linking
information stored in a linking matrix L. The version of the algorithm we presented worked well for
our simple examples, but it turns out that Google doesn’t solve the problem using the methods we
implemented—our original method is too slow to handle extremely large linking matrices.
https://www.math.ucsd.edu/~math18/Lab4.shtml
5/7
4 ︱ Eigenvalues & Diagonalization
8/23/2021
We want to find a quick way to solve the equation Lr = r even when the dimension of the linking
matrix L is very large (and we expect L to be large because the web is huge). One thing we have
going for us is that almost all the entries of L are going to be 0, since most websites don’t link to
most other websites. Our favorite technique for solving linear systems, Gaussian elimination, will
mess this up: after only a few steps, a lot of the zero entries will be replaced with nonzero
numbers. So we’d prefer to try something else. Here, we’ll use a more elaborate version of the
theorem we relied on before.
Theorem (Perron–Frobenius): For any matrix L whose entries are all nonnegative and whose
columns each sum to one, the largest eigenvalue is 1. Moreover, for any vector r0 with positive
entries, the vector rn = Lnr0 approaches a nonnegative vector r that is a solution to the eigenvalue
problem Lr = r.
Now we’ve recast the phenomenon behind PageRank as one involving eigenvalues, eigenvectors,
and iteration of the matrix L (i.e., raising L to large powers). Specifically, if we take n to be large
enough, then Lnr0 will approach the solution we’re looking for.
Exercise 4.6
Consider the following linking matrix showing connections between the websites A, B, C, D,
E, F, G, and H:
Enter this matrix into MATLAB with the command
>> L = [0,0,0,0,1,0,0,0;
0,0,0,0,0,0,0,1;
0,1/2,0,0,0,0,1,0;
1/2,0,1/2,0,0,0,0,0;
0,0,1/2,0,0,1,0,0;
1/2,0,0,0,0,0,0,0;
0,1/2,0,0,0,0,0,0;
0,0,0,1,0,0,0,0;]
a. Let e0 = (1, 1, 1, 1, 1, 1, 1, 1)T, and define en+1 = Len (which is the same as saying en =
Lne0). Use MATLAB to compute e10. How large must n be so that each entry of en
changes by less than 1% when we increase n by 1? [Don’t try to get an exact value, just
try to get a value for n that’s big enough.]
b. In the graph of the network of webpages represented by L, which vertices have an edge
going out and pointing toward website C? Which vertices do the edges coming out of C
point to? (Here, by graph we mean a collection of vertices and edges.)
If you find this PageRank algorithm interesting, you might try to answer the following question:
what is the computation cost of solving Lr = r using iteration? More precisely, about how many
operations are required to find rn in this method? Multiplying a number by 0 and adding two
https://www.math.ucsd.edu/~math18/Lab4.shtml
6/7
4 ︱ Eigenvalues & Diagonalization
8/23/2021
numbers together each cost almost no time, so we just need to count how many times we have to
multiply two nonzero numbers together.
What usually happens in practice for very large L is that the convergence of rn to r is very quick,
and so the size of n needed for decent accuracy often doesn’t go up rapidly with the dimensions
of L. This is very important because the dimensions of L for real websites will be on the order of
hundreds of millions. Convergence is especially quick if our initial guess at the answer is good.
The type of iteration we’ve just seen is the basic idea behind solving many large-scale problems,
not just PageRank. Methods like Gaussian elimination implemented in MATLAB are very reliable for
matrices of modest size, but they take a long time when there are more than a few hundred
variables. Iterative methods work well on large matrices with high probability, but they’re not
completely reliable—some matrices will mess them up.
4.6 ︱ Conclusion
We’ve now learned how to use MATLAB to compute determinants, eigenvalues, and eigenvectors,
and we’ve used these tools to diagonalize matrices. We’ve also studied how these things can be
applied to study fairly complex models using iteration.
Last Modified: August 2021
https://www.math.ucsd.edu/~math18/Lab4.shtml
7/7
Icon
Item
Comments
Commands entered You should copy relevant input and output from MATLAB
in MATLAB & and paste it into your Word document. You need only
resulting output include commands that worked.
Plots & graphs
Include all graphs generated in an exercise unless the
problem specifically tells you which/how many to include.
Answer questions with at least one or two complete
Full sentence
sentences. Even if you’re stuck, write down any
response
reasoning or ideas you’ve had.
Do scratch work without using MATLAB. Record this
Requires manual
work in your Word document, either by typing it or
work
scanning it.

Place your order
(550 words)

Approximate price: $22

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
The price is based on these factors:
Academic level
Number of pages
Urgency
Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more

Order your essay today and save 30% with the discount code ESSAYHELP