Home » NYU Algebra Worksheet

NYU Algebra Worksheet

total of 8 questions, please see the attachment

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

1. Let X be an octahedron, with faces colored black and white such that no twofaces which share an edge have the same color. Let G be the group of rotationalsymmetries of X.(i) Sketch X.(ii) Let v be a vertex of X. Find |Gv| and |G(v)|.(iii) Let e be an edge of X. Find |Ge| and |G(e)|.(iv) Let f be a face of X. Find |Gf | and |G(f)|.(v) Does G act transitively on vertices? On edges? On faces?(vi) Use the orbit-stabilizer theorem to deduce the order of G.(vii) Use the classification of finite subgroups of SO3(R) to determine the groupG.Let G be a group which acts on a set X, and let x ∈ X. Prove that Gx = Gy forall y ∈ G(x) if and only if Gx is a normal subgroup of G.4. Consider the dihedral group D3 = {1, x, x2, y, xy, x2y}. Let D3 act on itself byleft-multiplication.(i) Determine the associated permutation representation ϕ: D3 → S6.(ii) List the elements of S6 which form the subgroup ϕ(D3).(iii) Check that ϕ(y)ϕ(x) = ϕ(x2)ϕ(y) in S6.15. (i) Partition the alternating group A4 into its conjugacy classes.(ii) Write down the class equation for A4.(iii) Prove that A4 is not simple.(iv) Find the centralizer of (124) in A4. Homework Four
Due on Tuesday, November 30th at 6:00pm.
For references, consult §XXI-XXVIII of the lecture notes or §6.7–7.6 of Artin.
1. Let X be an octahedron, with faces colored black and white such that no two
faces which share an edge have the same color. Let G be the group of rotational
symmetries of X.
(i) Sketch X.
(ii) Let v be a vertex of X. Find |Gv | and |G(v)|.
(iii) Let e be an edge of X. Find |Ge | and |G(e)|.
(iv) Let f be a face of X. Find |Gf | and |G(f )|.
(v) Does G act transitively on vertices? On edges? On faces?
(vi) Use the orbit-stabilizer theorem to deduce the order of G.
(vii) Use the classification of finite subgroups of SO3 (R) to determine the group
G.
2. Let X be a right pyramid on a hexagonal base. Let Y be the solid formed by
gluing 2 copies of X together along their bases. Let G be the rotational symmetry
group of Y .
(i) Sketch Y .
(ii) Use the orbit-stabilizer theorem to find the order of G.
(iii) Use the classification of finite subgroups of SO3 (R) to determine the group
G.
3. Let G be a group which acts on a set X, and let x 2 X. Prove that Gx = Gy for
all y 2 G(x) if and only if Gx is a normal subgroup of G.
4. Consider the dihedral group D3 = {1, x, x2 , y, xy, x2 y}. Let D3 act on itself by
left-multiplication.
(i) Determine the associated permutation representation ‘ : D3 ! S6 .
(ii) List the elements of S6 which form the subgroup ‘(D3 ).
(iii) Check that ‘(y)'(x) = ‘(x2 )'(y) in S6 .
1
5.
(i) Partition the alternating group A4 into its conjugacy classes.
(ii) Write down the class equation for A4 .
(iii) Prove that A4 is not simple.
(iv) Find the centralizer of (124) in A4 .
6. Find the class equation for the symmetric group S5 . Give an explanation of how
you calculated each term.
7.
(i) Let G be a non-abelian group of order p3 , where p is a prime. Prove that
the center of G has order p.
(ii) Let p be a prime and let
82
9
3
< 1 a b = H = 40 1 c 5 | a, b, c 2 Fp . : ; 0 0 1 Show that H is a non-abelian group of order p3 . (iii) Prove that every non-trivial element of H has order p if p is an odd prime. What happens when p = 2? (iv) Find the center of H. 8. What is your favourite group? Write one or two paragraphs to explain why. 2 v_i I.) —‘ifl $ 3• 0 - Jç ] • J Ii VI Q_:: — It — 3 0 I VI 3—, 0 1,-I r 0— - - Sj ci) 4. Q_ 3• ) ‘f-% 3 cL! Q_ ‘ 10 r 0 .‘ 4J U _ 0 _c— vJ I— 0; - 4- - —1- __r _c tt - Q_ g_. __%% i - Q-1 Q_ - — j. — - 3 I 4- 40 - ) - 40 ‘.J - C .- I 10 — c_V’ / %ç - I’ t — ‘a 0 . — — V1 cy u( cr’ %L7 CD —S 1J3 —— C -- 0-’ w _I I 0’ o — t) i 5 I ,0 _ I D ii 3 Li — t_/ S , -, A I) r p 0 F (‘5 —o ‘I-’ — , c- Lrr 11cA ‘4 4 ‘-I 1” 1 o I.1 & • ) C’...) 9.0 •‘ 0 3-F -I— ; o ‘4 I a J 0 LA) p 6 0 75- I.” IA r 1 - 21 C -h 0 0 Sb • — —. o cv’ —v rV%L ;fi c— f ft. ‘I n 3 • $ ,- S I 0 C,” , (0 ç 0 • 1- f’U>
cJ
_
.1
P
r
s-’,
£
—,
3
r\
P
SI..
-1–i,
0
?
0
J


D
II

D


•1
.3
II

I’
£
4-

,
/–c

0
0
0

°

t42c3
-;
I

11
=
—u
+


II

0
(L


3

r—
a
1
V’

-4
(S
I
J
S.’

vi
cj
2
-c4
0
_
_1
I
qi

_
a
._g
+
y

-+
.
0
a_ii
I,
0
vi
(4
,I
U
st

I
°
.=

-+
4%
0’
.%__Uo-,
Q—v1
at
2
S
14]
J1
j’..W
(4
Q-r
%%
____‘%
)
S
-+.
b)
j
-1I
0
—‘S
C
V.,
tt
‘—I
Ii
V
a
t_t
U
1-
S
I

‘3
ill
4—

C…,,
1
‘1
‘.
-,
F
c
11
F\
C.
o

c.c
CA
i
; (.
,—0
3.
(A
-,
C
)A
0
T
±
I—
£
f
-0
c_D
.D
L
0
o
5.
4
‘‘
I
°

LY’
c%
0
f
_cU)
,,
-4;.
CA
0
Or
r

,
0
1

Lc
‘-1
tj’
cAo’
CA
LL

L
c.D
H’
—s
c.3
.
I
CA

L-


-,
‘(
y
%.
0
I73
–cT
,
r-
,
4-
£,
c4±
j
(15
0
.4-.,,
I.
o
F
-.
j
z
7
_
m
I
ci
C
L.A
$
0
±
-,
LS
.9
7
p

0
Cl
CA
__
,—..,

‘ç

A
q
D
.
-‘
j—

F
—a
6
-‘
_
.,
.
II
I)
—.
.
11
x
\‘
3,
,,
ro
‘-
0

0
—LZ°
•r-
)1
0
çc3
S
••fr

T
y;
0
.9..
-‘
çj
x
-1,
-4-)-
4-
7’
i
4t•%
—(
U
S
Li
E
S

Sn
I
J

‘)
I]

.
C
L1..
w
d
c_f
0

0
_
‘3.
I

S
a
fri
—F
_‘j
0
I,
r
U
3•)
I
j
,
I
I%j
0
fr.
_C

-o’N
1
‘.i
i4]
0
0

$
-%
-‘
C
5
‘—I
13
C
/‘
.
.
•J

II
‘3

ci
f%
1(1.)

(4
It
II
IIp
Tg
-:3
U
(5

-t
r

a.
fri
‘3
3,
ii

u
.-t.t
‘So

a.
%c
tt

.d-
.w
,
0-i-
ii
‘S—’
-U;
o
‘S
j
I
-‘3
a—
cv’
Is

4
4
Q_
V.’
sJ
‘.1
I
N
a-.
‘J
I

‘3

c
I’
M
Ott,
.4,


7
S.,
-h
m
S.,
cD
cc
IL°
t1
z
+.
3
0’
C’

Z

c_
÷
/_s

I
-/
3
(I
t).

-I
n.
T

7e
CII
‘—
,I1
‘S
C.4
,
r

I
5
\JiJ
3
s

-%
z
UI)

0
a
‘A1
I
Y
fi
I.’
C_C

o

3•
£1
ft
,
-I—i
C’
vsJ
zr
‘-‘
1
‘•‘
A
LI
‘-
0’
“I
7
‘—I
I)
x
&
1’
r
5
£1’
.jJ
0
1)
+
I,
7
4_D
C4JLL
°‘
-‘
Ii
1’
C
c’
LI
H
1

c__al
c_p
••
(J
1)
,%
r
—(
fl


—f
4—
$)
“.
10
zr

:1-,
c)
b
LJ1-)
1
2
%._o
‘-p
C—S
u
‘F
..
0
L.
3j
a
-h
Th

Lt
1

V
:‘
U
1
00’
P
0tj’OO°
Fc
hr
fri
11

J

x
0
r)
-1-3
1.
ii
(‘-1—
‘p
r
tI)
U
r*)
CD
LA
n
‘p
ci
ci
II
tV
a’
1
‘A
£

—s•
C-,
—r
/
i—
S
g j
2
2

tt
ft
\Jç
0
-+
C)
I—
d
_i
—t
I
ODX


I


=
:
-_
0
2
It
•0
SI?
•(r)
V.’


x
2
1-

.-

L
;
VI
Ski
•%J
tJ
It
,
(I

\/
..
t
]
L

/
•,
u,’
o•’-J

C
V
—4
—;
j
—.
tu
0’—

——-
j

J
2cj

‘.,
0-
H-v-
-J:
IIfv:
.

02yG2’
‘V
2
cL
(3
SuL
-4-
.
cj

£,çj
0
-cT2
‘a
D’21
2s

o
p
If
I_c
q
I-

-1-
(4.
C.,
U
(v_I

£
p
£
I
‘)
]
4
4
0
(3
U
I
£
h

_t
3—
cj
)


it
II
£
-)

=

%6
r
0
3•
2
-i
J
C
0
r


r1
1
(J
_q-
Cl
0
-.
_‘
‘S
j
0
—.
rP

g
r-l
Q
tL

0
vi


+
.-,
£
•V)
4-r-
L
Ii
•-3
L)
4X
0
.A
£

0
.-j
r
v
ç
‘-tt
_1
3
6
C

)4çfgJ
1i41Li
0
-—+
S
n
‘S
0
c
F
,
2
a_
Q_
U
0.
cy-1
S


0
a—,
(V
i’
cj

]
4.)
1
0•

A

0
0_Co
(.4

G
0c5
d
.1
a
0
•1-
13.1
in
(I
(.C
I
5
I
V
Fir.
_3I

-o
i
-o
I

S
c
I’
_s(_c
I’
.VI

I
-.-
U
P
0
H7
•%C%

C
0—
c
÷
..
S
0
C
vi
n
vi
“3

0
_a
4
0
VI

4
?
‘1
x
1’
a
r4
cC
A
\.1
I3
f\k
44]
3
p
0
5
A
.tI
J
$
x
fcS
—7’V
1t
—,
P
—‘
j
£
3
I’
!
11k’
n
C’
,c\
1.]
.c-
00
‘-I
&
(-
t,J
4J’1
r
“cr
r-r-C
11

4;
)‘
(%
,-%
04e-
1
1
r
%‘
‘1
\-,
C
../
1•.
LvE-f
J

ii
..
t
I
çJ
c
5
N
-k
3
i0r
; J3
vJ
%D’C
‘%
r’
..*lc1
.
g
‘3
9_
00
c
3
0
±
3

—.
0
?
—,
.
0
0
.
÷
£
c’

I
J

c,
c
0
C
-v
1
Cr
f4s
+
•1
i
J%J

+
Th
4
H
eq
‘1
-t
C
£
C-)
3
.3
1-
—S
Is

r
(‘
r
Aj
tAr
ft’
±‘—D
(b.
L
vcl
‘F
3A
c-i)
oy
A)
1)
_—
1’
0
.c
‘I’
3’

00
Ø\
+
÷
1-

-F
c’3_—3 oO
-F-
‘‘
4-

1’
-7

(%)
.4
t.
+
It
0
4”

(S
t)
cA’
C
0
-F
‘l
c1o-.
>SS
—,
f_…

fT’
+7
1)
I
3
•5
‘I
35
P
÷
C
.
—S
r
0

3 2

°
cD
312
$
4OIA
2-A
‘‘1L
S-A

,
2cJ
a
t_2G1%J
%–T.4

–4- ‘r’r’r°
.2
–1’,
_S’.Af
soA
2
A
x
I’
V-
-z-i

0)
ci
vi
-4

4
4
‘p
0
(I
x
g
w
‘-“3
c
_
0)
(%J
).
LU4
7
0
L

1h#’
‘-.‘
r4J
%
(4g••%
‘I
I—
0
tij
Jvv
-4-
7_) —U.
VP
7
0
07
I

‘.3’
N
\
x
T)
4If
Hp

tt
(I
£
(%?
1)
ei•
t
1a_,
r’
U
a
r

5_)
CrJ
(3
j
9
r-L1
]
‘if
0.
1
“I
+
0
zz
I
—r9
ci
3
I
S
o
••
3
cr
cc

__
ci]

v)
I
cs
‘A
1)
c
_.c;—
r
-,
-.
J
-,
U
V

.•


‘4
c’-i
C_D
r)

;‘

C’
5I
c

r
-,p
‘I

•4—
‘I’
‘-.3
F
4-

S
0
J
0
±


I
Ju
-1-
0
r ci
I—’
Lf
z
£Q1I—1
‘-C
c
4.-,
ll
r
c-C’
°
.
)

cD
Il
1)
‘—
0
‘-‘
7

c
)
Nc—C’,
II

-%
nj
0
r
ç1]
p
II

ç
rki
In
Jo
(j%J c
“Li(
I,
5
?
t1’L
(3cD
rc
t1)
–r’
÷
r\
£
•c
çN-)/
C,
(Y)
II

r
Cl

4-Z
d
Mj

tL
-‘
-;z4]
ii
r4Ji
r
I
ii
-T
I’
‘—
fJ
4
(wI
(4
jba
(•%
%3lt
—.r-)I(
J_1t)
tL
J)
t_-
fyi
I
q
a
ci.’
,
I.)
0
V..
‘‘J
a-i-
_1
‘S
J
C
..‘
i


J
0
r-)_3
S.
7-,

1
‘0-,r4
-,
1t
—.
I,
‘‘r’
g
Ut

4d
r)
Ile_)
I’;—’

)cJ_ç
r
a-)
\c_tJw
-4-
13
,—)J_’
Ic
4’
4
v
C
1
ti
U’
(I
C

4)
tl—
__
‘I
C’
C,
d1
U-
ve
‘—
I’]
ti
LJ
i)
ck)
‘9
-1-
+
+
+
4,
ic
Jr
(
‘p
‘It
U
+
+
CJ

4-
1
\M
.1
çr
4:

-,
_‘_v.
£
‘i
I
0
C
‘4
-h
-c5
1_I
> j
‘4

0_
0

—:_
j
gcj
0D
0
c.j
%4.
Jri)
-J
3
\]
+

V
0
IL

Ii
cJ
4
-:i°4
‘f


J
ci
-r
eJL
+
q—
It

joJjC4)
IL
“I
3V
C
4
4
4
1
.—%-
‘—
-1-
-(

S
£“—c..
P
Ic
C..,
ij
i2
4—
—t-
••
_r
G
o
S.

—r
0
rJ
-,
I
>

5

J

)
.j


‘I
S
‘L-°
C
0

V.’
cJ
4
J- 4-J
‘4
0
+
4
a
-s
p
.
UI

3.
I
3
0
cJ
,
I—
v’
—.
c
Cf
‘5.
V)
4:
i
C
‘h

S

yp’


ii
•—
•S
,.
A1J
If
Iv
)
It
.€
II
1- t
4
1.0-i
3—i-
It
7_s
(Jç5ocJ
-j.
1
I

-fr

£
t
I’
I’
,—.
‘)
>-
C
xx
I—
,
a
£-L
F
£
-i
o
c
x
t/)
•.
cr ‘9-
0
cj
‘ —
‘4
C
0
c


••
‘:

Lr
IL
>< . , II -LO çX ‘I’ £X( 0 It I 0 c-J 3-_ ) st.. ‘ ê - a c. q r . a frj $ I— fl v %c4 £ Xv J 0 c4 4 - 10 S U - 4 •-•1- 2— v 0 (3 I x a-’ ] , I (U 0 % I — ) C, rçya’ $ ‘ — cj; C %J A IJ 7-) IL *‘ çr ,-4r-- £ 1 L4__t t 4_ I .. ‘p -I 4 It 2g1 I f u1 33 —;: o S 0 -4- I-, —I 11 cj11 J -L ‘ 0 I r _I -, l) j 0 v!( 9-Ct I- -S f - 1 1 “ \11 v-I r 0 r 4 I cJ’ C,. ‘4 p -1- yG — •‘ ‘-i- 4 L) u4 1’ C ---- T 4 r 3 >
‘.
(%3)
H
1(
Cl

tI&
U

a
7)

(c4r3
sJJJ
f_s —s
IT
r
a—
tJ
5.
::
5-.?
f_s

t”
5.
(vs
4.]
I.—.
c
‘2
S
0
11
I
cJc’±I]
,_%
0
$
cSa-,
cTr


gu
I
0
I
0
j
C.
I
\Jf
C
I)
i
0
C
0
‘I)
Cr
y
0
c3•
,
cj
_T
;

_‘

II
r
Lr
_t
0
t
-r
III
II
rb
-$
atI’,

0
jD
III
V
—3

r
I
0
U
1’
I
‘J
It
II
c-
N
-t
4
j
U
‘)
Ct-
it
-Th
tI
It
ft
•tl
Ic
+
‘.L1
.
-;ç.
fU
x‘a-,
‘1
12
ia-,
‘aThW
%)i
WTr,
S
t-(
g
ci
g
V
‘ti,
rw
..
a
C
C)’
-‘
U
tc
-4-
i
C-.
1’
F
•1
0
(‘??
U
4c
N
y

El
cL
11
‘—A
LD1
U
0
r

H
LD
(1’
$
%-i-..
a
c-fl
£
m
II
?LA
cD
h
(1
r
t
-10
(.A
co
f)rJ-3ç
4r(%_?
a’
fci,
_i1(t)
Li)1
tlt’
t-A
0
1
o
-)

o
Ia)
4.
ç4l’
I—’
‘‘
0(4.1
Lt.
-i(-rJ
—‘
4%O
t
(I
1wJ
I—’
F: cçyçy
v-I
1)
H
-‘S
C
c4
It
-I
J
v)
w
±
i
ii.
ocj
(t
g
a
—.
a-
(4..
w
-I
3.
(t
4a
II
w
H
t
.1fl
it
it
—‘
csJ
(t
$
Im

p
-+

-ss
s
flV)
CT
4”,
i.
-c
(LVa
0)
cJ
O)
0
II
zr
1
-i-
14

tk
‘i4.
ii
f-fl’
“ii::
(
Ii
g
IL
—ç
Ii
a
_•i(
IL
. tL
ç3 -i
S
i’
vcL
0’

..
Ut
4-
I
zr
4-
—c
-L
4
y

R
a
(I
ii
g
_oit
—4
a
1
.
0
(Nc’
Hi)
(N
F
•r’
0
H
)‘t

I
I
(
r
1)
.Ic
I-
ii
I’
tr
4m1
0
0
I’

t
u
IT5’ LD
tT
i
:_
I-.
‘1‘-‘-A
‘‘
i
n
-h’
£fl
‘—7
js’
?)

0
3
p.
J
U
Lo
9
(A

Hf
(1\
S’

U
9
.0
L
1’
±
.D

3—
‘I
_
I.
Os’
t
E
IL_C
I
C
II
C’

£1,
dt’

i
:I:lr
D
II
IT’
.D
< 4 o- ‘4c4 0 ) ÷ ) b’s U- H’- I Q_. I O ‘I -+ cc 0 IL C4- — — %LU i{’3 cr 4 ct .,T oJ -+ kb Jcl o+C* f-I’ ij - C & ‘L I’ 4; LLsF i - t( -3 (I “5 —; ‘5 3- It ) ,,od ,‘ if’ a — -.5 I,’ —‘ — 1 0 ‘4- - c3 4 sji —C’-, I 0 II ‘I 4 • I fl -ç E . H • >
(
4—
t
(1’
A
(‘
%FI
y
44
‘4
6
(
.
-.
-fr
0
A
Dc
(J\
-.—AD
U
%d’V.’
%-‘
-‘
Irlir
(1
(A
a
.‘,_
•_
•%
r
r
D
5.

PA



-p(
II
>—
s


-i—
0
D
p
C,,
I
nEco
‘r’
a
c_o
£

U
-A
c__c

I

-,
,
L
(I’
C
•%J
a
bcr
a
.
c
i’
LAn
.f
o
4-
o
‘4
LI
L
a
0
-h)
T
(•I
7
c
I
-F
-S
i1
c1-
—.
£
o0L
Li’
‘SI
c
(A]
4
I;,

o
T1
•1
lb
‘1
-c
i.
0
z—o
1
U
.1
4—,
5
‘A)
7
‘a
-,
tA
I
C
c
C
y
(1

ON),
I
c_ot
‘4)
r
(-3
#44
jre’C-’
r
‘>:

O1
I-i
-t
04,
r
0;
z—
II
ot
r
p-i
L
“8
‘-1
a
I
C
L’
p
i’•

‘c_c
N
ci
S
W
rr

ii:
0
0
7
LI
H
if
.1
;
7
)
37
f
It.


J
L
C.
I
[
_f 1’
0
r
J_”
0
I
I
L0
L.A
C’
H
V..)
r’J
H
r
r
S

0
0
1
.
\-f
..1
e

Q
0
Li
I’
ni-i
-I-c
*
T
c—,
7
9CI
[1,n
o

Si
OsjS4\S
-n%nj
–il)
s-f-
es.cLoqaqoç1
•Sv_c©a,
“tL
rv
S.J

Place your order
(550 words)

Approximate price: $22

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
The price is based on these factors:
Academic level
Number of pages
Urgency
Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more

Order your essay today and save 30% with the discount code ESSAYHELP